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We show that nonlinear interface growth models with roughness exponent @=1 have intrinsic nonpertur-
bative infrared singularities which are inaccessible to the usual dynamical renormalization group analysis. We
argue that these infrared singularities give rise to a strong-coupling problem in 1+1 dimensions and provide
the underlying reason for the difference between local and global dynamic scaling in these models.
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Much recent interest [1] has focused on generic scale in-
variance aspects of conserved interface growth dynamics
where surface diffusion is the dominant relaxation mecha-
nism. It has been argued [1-3] that if surface overhang
and/or bulk vacancy formation is negligible, then nonequi-
librium surface growth dynamics may be described by a
fourth-order conserved equation, introduced by Lai and Das
Sarma [2] and by Villain [3], which is distinct from the well-
studied [4] generic second-order growth model. In this paper
we show that the nonlinear fourth-order conserved growth
equation has infrared singularities in 1+ 1 dimensions akin to
those in the fluid turbulence problem. These infrared singu-
larities nontrivially affect the critical growth exponents as
derived by dynamical renormalization group (DRG) tech-
niques, giving rise to anomalous dynamic scaling [5—7] and
signatures of multiaffinity [7]. Effectively, these infrared sin-
gularities convert the problem to a ‘“‘strong-coupling” prob-
lem in the substrate dimension d=1, and a perturbative DRG
analysis fails to give the “correct” exponents. We propose
these infrared singularities underlying the fourth-order
growth equation as the reason for a number of recently re-
ported peculiar findings in the computer simulation of sur-
face diffusion dominated conserved discrete growth models.
Theoretical results presented here show that the conserved
nonlinear MBE growth equation has a type of “lower critical
dimensionality” (d.), d.=1, where the global exponents are
still defined by the perturbative DRG theory [2], but signifi-
cant strong-coupling corrections (not captured in the DRG
analysis) arise in d<d, leading to anomalous [5,6] and
multiaffine [7] scaling.

One of the more interesting recent developments in the
analysis of growth models is the discovery [5,6] of anoma-
lous dynamic scaling (and the associated difference between
local and global scaling) in 1+1 dimensions. While Das
Sarma et al. [5] considered the height-height correlation,
higher-order correlations were numerically analyzed by Krug
[7], who also noted the analogy between anomalous dynamic
scaling and the phenomenon of intermittency in turbulence.
Accumulating numerical data [8—10] have also indicated that
while discrete growth models in 1+1 dimensions yield criti-
cal exponents quite different from those obtained from the
nonlinear continuum model [2] of Lai, Das Sarma, and Vil-
lain (LDV), in 2+1 dimensions they yield the same expo-
nents as the continuum model. Further, in trying to integrate
the continuum LDV equation numerically in 1+1 dimen-
sions, Tu noted [11] an instability in 141 dimensions. In this
paper we point out the existence of a type of infrared singu-
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larity for d=<1 in a class of growth models described by the
fourth-order conserved nonlinear continuum equation. The
existence of the singularity (i) explains the origin of the
anomalous dynamic scaling [5]; (ii) gives a qualitative ex-
planation for the similarities and differences in the behaviors
of discrete and continuum models; and (iii) provides the
mechanism behind the intermittent multifractal behavior ob-
served by Krug [7] in the discrete Das Sarma—Tamborenea
(DT) model [12].

The observed empirical similarity between the behavior
of position dependent correlation functions in the growth
model and the problem of intermittency in turbulence gives
us indications for an infrared singularity underlying the
anomalous dynamic scaling behavior. It is thought that inter-
mittency in turbulence arises from the existence of an infra-
red singularity and of an infinite number of relevant opera-
tors [13]. We have consequently examined both of these
issues in the LDV growth model, finding the existence of an
infinite set of relevant operators and an infrared singularity
which combine to provide an explanation for anomalous dy-
namic scaling in this class of growth models. The existence
of an infinite set of relevant operators in this growth prob-
lem has earlier been noted in the literature [2,7,11].

We begin by briefly recalling the continuum LDV model

[2]. The height fluctuation variable h(x,f) grows according
to the dynamical equation

Oh/dt=—v,Vih+N\,V3(Vh)?+ 7, 1)
where 7 is a nonconserved white noise. The d-dimensional
vector x lies in the substrate. The height-height correlation

function is written as C(r,1) = (h(x,to)h(x +r;ty+ t)) and in
Fourier space has the standard dynamic scaling form [14]

Clk,w) =k~ 224 2F(w/k?). )

The exponents z and « are the usual dynamic and roughness
exponents, respectively, with z being associated with a char-
acteristic frequency, w,~k*, which characterizes the mode
relaxation rate. For a system of size L, Eq. (2) implies that
the mean square interface width (h%(x,))~L?“ at very long
times when the time dependence of the variance disappears.
The long-time dynamic scaling behavior of C(r)~r2® is
also implied by Eq. (2). According to the DRG analysis of
Lai and Das Sarma a=(4—d)/3, z=(8+d)/3 and these
exponents are expected [15] to be “exact” (in the perturba-
tive DRG sense) to all loops. Anomalous dynamic scaling
[5,6] involves replacing Eq. (2) by the modified scaling
ansatz
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J Clk,w)dwek™2* Ig(k§) 3)
where for k¢>1, g(x)~x~*. Standard scaling [14] would
imply g(x)=const identically. The functional dependence of
g(k) on k, which immediately requires a length scale ¢, is the
anomalous scaling found in Ref. [5]. The characteristic fre-
quency w, scales as w.=k*f(k&) where f(x)~x7” for x>1
in the anomalous scaling situation. Here £ is the characteris-
tic correlation length along the surface which is cut off by
the substrate size L for §>L. The signature of anomalous
behavior in growth models is the existence of the functions
g(x) and f(x) (and of the exponents « and ) which makes
the short distance (r<<¢) behavior different from that of
the usual dynamic scaling situation. [In the usual dynamic
scaling situation g(x) and f(x) are constants for x>1.]
The anomalous behavior for the higher-order correlations
was formulated by Krug [7] as ([h(x+r,t)—h(x,t)]9)"4
=r%& af,(r/€), with f (x)— const for x—0, which is an
obvious generalization of Eq. (3) for g # 2. (We note that we
have changed the exponent notations of Ref. [7] to conform
to ours.) The fact that e, is a function of g is the signature
[16] of multifractal behavior.

Anticipating that part of the anomalous behavior stems
from the existence of the relevant operators in Eq. (1), we
start with the “higher-order” growth equation

oh

— ==,V + VN (VAh)2+ N (VR)*+

= Clen @

We take the view that the asymptotic critical properties of the
model with A4=\g=---=0 [i.e., Eq. (1)] have been exactly
solved [2,15] in the perturbative DRG sense and the answer
expressed by the LDV exponents. What we explore in this
work is whether there is a lower critical dimension d. such
that for d<d_ all the “higher-order” A4, A4, ..., etc.
terms become “relevant,” affecting the DRG exponents [2]
in a strong-coupling nonperturbative sense. Power counting
shows that for a<<1 the couplings X\, with 2n=4 are irrel-
evant, while for @>1 they become relevant with a=1 as the
marginal situation. Thus, in d=1 (<1) all operators
N2n(VH)?" are marginal (relevant). For d>1, the higher-
order terms are irrelevant.

We now exhibit the vital feature in d =1 which makes this
the lower critical dimension. To do so we work with the
original LDV model, Eq. (1), to begin with and calculate the
propagator G(k,w) in perturbation theory. As usual

G U k,w)=Gy (k,w)+ 2 (k,w)=—iw+ vk*+3(k,0), (5)

so that the physical significance of the self energy % (k,w) is
the characteristic relaxation rate, and 3, (k, ) has the scaling
form 2(k,w)=k*o(w/k*) where o(x)— const as x—0, so
that 3,(k,0)=Tk?. The propagator is dominated by =, (k,w)
when z<<4, which occurs for d<<4. In this range, we obtain
the single loop self-consistent contribution [Fig. 1(a)]:

dp dw - -
5:(k,0>=>\%k2f+ Gy 25k DTPC(P.0)G(g. @)
pTq=

d’ p (k-g)g* 1
(2 ) p2a+d 2p +qza
where in the second line we have made the standard Lorent-
zian approximation for the shape of the correlation function.

)\2 2 (6)
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FIG. 1. The two lowest infrared singular contributions to the self-energy
[(a) and (b)] and the correlation function [(c) and (d)] arising from the A,

[(a) and (c)] and the A4 [(b) and (d)] nonlinearities (solid line is the dressed
propagator and the wavy line is the dressed correlator or the spectral density
function).

Using 2(k)~k?, it is immediately clear from Eq. (5) that
power counting supports «+z=4. The validity of the power
counting depends on the p integral being finite and we find
on inspection that as p—O0 the integral behaves as
Jd,/p**~!, which is infrared divergent for 2a—1=1 or
a=1. As noted previously, this means d<1 with d=1 being
the marginal dimension where the infrared singularity pro-
duces a logarithmic divergence. From now on, we concen-
trate on d=1. Using £~ ! as the usual cutoff to suppress the
logarithmic divergence in Eq. (6) we get

3. (k)=3(k,0)~k3In(k¢). 7)

An identical argument for the correlation function shows a
similar logarithmic correction. Thus the continuum model of
Lai and Das Sarma will have logarithmic corrections at
d=1 as was mentioned in Ref. [5]. Perturbative DRG analy-
sis misses this “strong-coupling” infrared singularity.

We now explore the contributions from the higher-order
nonlinearities N4, Ag, ..., etc. which are all marginal in
d=1. The lowest-order (\,) diagram is shown in Fig. 1(b)
and it is immediately obvious that when the momentum
flows through the propagator line, there will be an infrared
singularity with the strength [ In(k¢)]>. From the A, term
the contribution to 3 (k) reads ~k>[ In(k£)]3. The result for
the \,, term can be easily envisaged to be &3[In(k&)]?"~ 1.

Having obtained an infinite logarithmic series of the form
k32 ,a,[In(k&)]*"~1, where the coefficients a, depend explic-
itly on the coupling strengths \,,,, we are unable to proceed
any further without making some essential assumptions
about the behavior of the strong-coupling series. There are
two possibilities: the infinite series does not converge to a
universal strong-coupling fixed point, implying nonuniversal
model-dependent scaling behavior, or, the coupling constants
N\,, are driven to some universal (i.e., model-independent)
nonperturbative fixed point, leading to universal strong-
coupling critical behavior. Anticipating the existence of a
strong-coupling fixed point in the vicinity of which (possibly
nonuniversal) scaling is regained, we can exponentiate the
singular \,,-series of logarithms to write

S (k) ~ K (k€). (®)
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The anomalous exponent Y(>0) is, in principle, generically
nonuniversal unless a true strong-coupling fixed point exists
which assures the flow of the coupling strengths \,, to the
fixed point. We are, however, unable to calculate y exactly
unless the nature of the nonperturbative fixed point is clari-
fied.

We now turn to the correlation function C(k,®) and note
that the lowest-order contribution from \, in d=1 [Fig.
1(c)] is

2.2
kZC(k,w)~)\§|G0(k,w)|2k6f §p3 —re )
ra % pig?

Clearly, there is the same infrared (p—0) divergence in the
integral in Eq. (9) as we have already discussed, and
JC(k,w)dw~k~3In(k€). The N4 contributions of Fig. 1(d)
have a similar infrared divergence as discussed previously
and an exact repetition of previous argument for the \,,
series yields

f Clk,w)dw~k™3(k&)X, (10)

where the anomalous exponent « differs from 7y only by a
numerical constant. Once again «>0 and in terms of the
correlation function in real space this implies that the »2¢
behavior is replaced by r2%(r/&)”*. Thus the roughness ex-
ponent « gets replaced by a’ in the correlation function with
a' = a— /2 and the short-distance correlation function devel-
ops a time dependence &<~t*? for ¢<L, which are pre-
cisely the anomalous dynamic scaling findings [5] in numeri-
cal simulations. Equation (10) establishes anomalous
dynamic scaling for the height-height correlation function,
but not multiscaling of higher-order C,’s.

If we now turn to the higher-order height difference
correlators C, studied by Krug [7], C, (r)~(|h(x,?)
—h(x+r,t)|9), then using the correlation function of Eq.
(10) and a Gaussian closure approximation, we find in the

lowest-order factoring approximation that C q~r2a' for all
g=2 where 2a’' =2a— k, to be contrasted with the usual dy-
namic scaling result C,~r®9. This is because in the Gauss-
ian decomposition and in the subsequent integration over the
internal momenta, all the integrals save one yield cutoff de-
pendent constants—the scale dependence comes from only
one internal line and hence for all g>>2 one obtains the same

answer as g=2. At this lowest order, C,"4~r2*"/4 and
therefore the multiaffine g dependence of the various mo-
ments of the height correlation is rather simple. It is reassur-
ing to see that Krug’s numerical results [7] for the DT model
are not inconsistent with this simple lowest-order invariance

law, i.e., Cq~r2"’, to within £25%. This is not to say that
the deviation from the invariance shown by the numerical
data [7] is spurious. Indeed a preliminary investigation of the
higher-order diagrams shows that corrections develop which
are either nonuniversal or depend on the fixed point values of
N,, (n=2), depending on whether a strong-coupling fixed
point exists or not.

Finally, we turn to discrete nonequilibrium growth models
and discuss the possibility that all the recently introduced
[1-3] surface diffusion driven interface growth models
which have a=1 are described by Eq. (4), and are, therefore,
infrared singular. We have studied four discrete growth mod-
els numerically (Fig. 2) which we find are well described by
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FIG. 2. The square root of the numerically calculated long-time steady-
state height-height correlation function C,(r) (system size =500) for four
discrete nonequilibrium growth models. Top to bottom: &’ =0.68 (DT); 0.63
(modified DT); 0.68 (DT with diffusion length =3); 0.67 (LD). Inset shows
the long-time C(r) with g=2,3,4 (bottom to top) for the discrete LD model

which has @=1 (the slopes 2a=2 and 4@=4 are also shown for compari-
son); similar results for the DT model are given in Ref. [7].

the phenomenology discussed in this paper. These are the DT
model [12], the discrete LD model [2], the DT model with a
finite diffusion length [1], and a modified DT model where
after each instantaneous deposition or diffusion event all sin-
gly bonded particles at the growth front which have available
nearest-neighbor kink sites are allowed to move there. In Fig.
2 we show our calculated long-time C,(7) in d=1 for these
discrete models, finding that all of them have approximately
the same value of @' =a—k/2=~0.7. Our calculated results for
the higher moments of the height difference correlation func-
tion with g= 3,4 (shown as an inset in Fig. 2 for the discrete
LD model) in these models also approximately (within

+20%) satisfy the lowest-order theoretical result C q~r2“'.
The significance of the fact that these four different models
which have very different values of effective a=1.4 (DT),
1.3 (DT with finite diffusion length), 1.6 (modified DT), 1.0
(LD) as obtained from their saturated interface width scaling,
all have the same anomalous exponent @’ is not clear at this
stage. The four models are characterized by very different
values of the multiscaling exponent « (such that a'=a—«/2
is approximately a constant). It is quite clear, however, that
the four models approximately obey the phenomenology dis-
cussed in this paper, and for a given model the infrared sin-
gular behavior defined by Egs. (8) and (10) is valid, even
though the values of the anomalous exponents y and « seem
to be nonuniversal among the four models. This, in fact, is
quite plausible if we accept that each discrete model follows
Eq. (4) in the coarse-grained continuum limit with its own
unique set of coupling strengths \,, which varies from
model to model, and there is no universal strong-coupling
fixed point for all possible discrete models obeying Eq. (4),
implying nonuniversal values of the multifractal exponent «
in different models. In fact, there is already some numerical
evidence for the nonuniversal nature of anomalous dynamic
scaling [17].

To conclude, we have carried out a leading-order mode-
coupling analysis of the Lai—Das Sarma—Villain nonlinear
growth equation [Eq. (1)] as well as its natural higher-order
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nonlinear generalization [Eq. (4)] in order to investigate
whether the anomalous and multiaffine scaling discovered
numerically [5-7] in super-rough discrete growth models
(with the global roughness exponent a=1) could arise from
infrared singularities inherent in the LDV growth equation.
We find that there are nonperturbative infrared singularities
for d=d_ with d.=1 as the lower critical dimensionality of
the problem where the infrared singularities produce nonuni-
versal logarithmic power series corrections to the DRG
growth exponents [2]. The failure of the perturbative DRG
theory for d=<d, is signaled by the calculated [2] DRG
roughness exponent a=(4—d)/3 with a=1 for d<d.=1,
which implies that |Vh| diverges asymptotically and, there-
fore, all the higher-order nonlinear corrections of the form
V2(Vh)®" [cf. Eq. (4)] become marginal (relevant) for
d=d. (<d.) with respect to the LDV nonlinearity
V2(Vh)?2. Our mode-coupling analysis indicates that the lo-
cal roughness exponent a' characterizing the height-height
correlation function is affected by the infrared singularity in
d=1 leading to a'=a—«/2, where « is a (possibly) nonuni-
versal scaling exponent associated with the anomalous scal-
ing in the problem. Thus the infrared singularity arising from
asymptotically divergent |Vh| leads to a difference between
local and global scaling in the kinetic roughening problem,
as discovered [5,7] in the numerical simulations of discrete
super-rough kinetic growth models. In some sense, the
higher-order nonlinear terms of the form V2(Vh)2" with
n>1 in Eq. (4) act in d=1 as dangerously irrelevant fields
with a formal similarity to the corresponding dangerous ir-
relevant variable situation in the static critical phenomena
[18]. The very interesting point is that the “dangerous irrel-
evant field” in this problem changes the local (but not the
global) roughness exponent as well as the scaling function
whereas in the static critical phenomena the dangerous irrel-
evant variable affects only the asymptotic scaling function.
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We know of no situation in static critical phenomena where a
similar strong-coupling anomalous and multiaffine scaling
situation arise due to nonlinear infrared singularities. It is
conceivable that a similar scenario may apply to the equilib-
rium roughening problem [19] in d<O0 (i.e., d.=0) where
the corresponding wandering exponent {(d)=3(2—d) be-
comes {(d=0)=1. There have been very few studies [20]
of the equilibrium roughening problem around d =0, and to
the best of our knowledge the issue of anomalous and mul-
tiaffine scaling behavior has never been discussed in the con-
text of the equilibrium roughening phenomena [21]. Finaily,
one could legitimately question our use of the mode-
coupling technique to study the strong-coupling LDV behav-
ior. We believe that the mode-coupling analysis is adequate
to establish the existence of the strong-coupling infrared sin-
gular behavior of Egs. (1) and (4) for d<d.. Whether the
mode-coupling technique can produce the correct strong-
coupling exponents for a particular model is always a prob-
lematic issue and we have nothing to add to this formal
theoretical question. We can only state that the mode-
coupling technique has recently been extensively used [22]
in the kinetic roughening problem to study the strong-
coupling behavior of the Kardar-Parisi-Zhang equation, and
our use of it in this paper for the LDV equation, while being
somewhat speculative, should be of the same level of valid-
ity. One specific prediction is that there should be no anoma-
lous scaling and/or multiaffine scaling in growth models with
a<1. Thus in DT type models, our theory specifically rules
out anomalous scaling and multiscaling in d=2>d_,.=1. We
propose that extensive simulations be carried out to check
whether there is anomalous scaling in d=2 DT models,
which will be a direct test of the infrared singular mode-
coupling theory developed in this paper.
This work is supported by the ONR.
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